	Marke	NOVEN	TIN® 1)					
Werkstoff								
	Kurzzeichen	ichen CuMnNi 25-10						
	Chemische Zusammensetzung (Massenanteile) in % Mittelwerte der Legierungselemente							
	Cu Rest	Mn 25	Ni 10					

Merkmale und Anwendungshinweise

Die neu entwickelte Legierung NOVENTIN® steht in bester Tradition der von der Isabellenhütte angebotenen Präzisions-Widerstandslegierungen ZERANIN® 30, MANGANIN® und ISAOHM®. NOVENTIN® schließt mit seinem hohen spezifischen elektrischen Widerstand die Lücke zwischen MANGANIN® und ISAOHM®.

Wie die schon seit langem in vielen Bereichen eingesetzte Legierung MANGANIN®, zeichnet sich auch NOVENTIN® besonders durch einen kleinen Temperaturkoeffizienten des elektrischen Widerstands zwischen +20 und +50 °C mit parabelförmigem Verlauf der R(T)-Kurve, eine hohe Langzeitstabilität des elektrischen Widerstands, extrem niedrige Thermokraft gegen Kupfer und gute Verarbeitbarkeit aus.

Aufgrund dieser Eigenschaften ist NOVENTIN® zur Herstellung von Präzisions- und Standard-Widerständen ausgesprochen gut geeignet. Die maximale Anwendungstemperatur unter Atmosphäre liegt bei +170 °C.

Lieferart

NOVENTIN® wird in Form von Drähten im Abmessungsbereich von 0,03 bis 5,00 mm \emptyset in blanker oder lackierter Ausführung geliefert. Außerdem fertigen wir Bleche, Bänder, Flachdrähte, Stäbe und Litzen.

Elektrischer Widerstand in weichgeglühtem Zustand

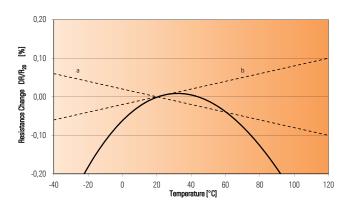
Temperaturkoeffizient des elektrischen Widerstands zwischen	Spezifischer elektrischer Widerstand in: $\mu\Omega$ x cm (Zeile 1) und Ω/CMF (Zeile 2) Richtwerte						
+20 °C und +50 °C 10 ⁻⁶ /K	+20 °C Toleranz ±5 %	+100 °C	+200 °C	+300 °C	+400 °C	+500 °C	
±10	90	90					
	540	540					

Physikalische Eigenschaften (Richtwerte)

Dichte bei -		Schmelzpunkt	Spezifische Wärme bei +20 °C	Wärmeleitfähigkeit bei +20°C	Mittlerer linearer Wärmeausdehnungskoeffizient zwischen +20 °C und	Thermokraft gegen Kupfer bei +20°C
					+100 °C	
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	μV/K
8,1	0,291	+940	0,47	12,5	18,5	±0,5

Festigkeitseigenschaften bei +20 °C in weichgeglühtem Zustand

Zugfestigkeit ²⁾		Bruchdehnung ($L_0 = 100 \text{ mm}$) % bei Nenndurchmesser in mm					
MPa	psi	0,03 to 0,063	> 0,063 to 0,125	> 0,125 to 0,50	> 0,50 to 1,00		
550	80.000	≈ 12	≈ 18	≈ 20	≥ 20		


¹⁾ NOVENTIN® ist ein eingetragenes Warenzeichen der Isabellenhütte Heusler GmbH & Co. KG.

²⁾ Der Wert gilt für einen Durchmesser von 1,0 mm. Bei dünneren Drähten liegen die Mindestwerte je nach Abmessung erheblich höher.

Anwendungshinweis // NOVENTIN® lässt sich gut verarbeiten. Die Legierung kann gelötet werden, sie entwickelt aber unter Atmosphäre eine dünne Oxidschicht, die vor der Verarbeitung entfernt werden muss. Mit einem passenden Flussmittel ist NOVENTIN® auch geeignet zum Tauchverzinnen. Widerstände aus NOVENTIN® müssen zum Abbau von mechanischen Spannungen gealtert werden.

Besondere Hinweise zum Temperaturkoeffizienten //

Die Grafik 1 zeigt die Änderung des elektrischen Widerstands in Abhängigkeit von der Temperatur für verschiedene Temperaturbereiche. Aufgrund des parabelförmigen Verlaufs der R(T)-Kurven im Bereich der Raumtemperatur (siehe Grafik 1) müssen die Werte des Temperaturkoeffizienten mit dem entsprechenden angewandten Temperaturbereich spezifiziert werden. Eine bessere und eindeutigere Charakterisierung der NOVENTIN®-R(T)-Kurve ist daher der zweite Nullübergang. Dieser gibt die Temperatur an, bei der der Widerstand die Nulllinie zum zweiten Mal schneidet und somit dem Wert bei +20 °C entspricht. Die gepunkteten geraden Linien a und b gelten für einen Temperaturkoeffizienten des elektrischen Widerstands von ±10 ppm/K.

Grafik 1: Temperaturabhängigkeit des elektrischen Widerstands (-40 °C bis +120 °C)

